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ABSTRACT
The Lindstrom-Madden method of computing lower confidence limits for

gseries systems with unlike components is extended to series systems with

repeated components utilizing the results of Harris and Soms (1983). An exact

solution is given for no failures and key test results, together with an

approximation for the general case. Numerical examples are also provided.

AMS (MOS) Subject Classifications: 62N05, 90B25

Key Words: Lindstrom~Madden approximation; Optimal confidence limits;
Reliability; Repeated components; Series system

Work Unit Number 4 (Statistics and Probability)

*Department o. Mathematical Sciences, University of Wisconsin-Milwaukee,
Milwaukee, WI 53201,

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-
0041, the Office of Naval Research under Contract No. N00014-79-C-0321, and
the University of Wisconsin-Milwaukee.




SIGNIFICANCE AND EXPLANATION

Series systems with repeated components arise often in engineering and
physics. It is therefore important to utilize data obtained on individual

components in an efficient manner when assessing the reliability of the

combined system. This paper gives o:... method for doing so.
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THE LINDSTROM~MADDEN METHOD FOR SERIES SYSTEMS WITH REPEATED COMPONENTS

Andrew P. SOms'

1. INTRODUCTION AND SUMMARY

A problem of substantial importance to practitioners in reliability is the
statistical estimation of the reliability of a series system of stochastically indepenéent
components when some components are repeated, using experimental data collected on the
individual components. 1In the situations discuesed in this paper, the component data
consist of a sequence of Bernoulli trials. Thus, for component i, i = 1,2,...,k, the
data is the pair (“i'Yi)' where n; is the number of trials and Yi is the number of
observations for which the component functions. Y¥.,Y;,...,¥y are assumed to be mutually
independent random variables. We assume that there are Yi components of type i,

1 <1 <€ k. Then the parameter of interest is h(p1,p2,...,pk) = h(S), the reliability of
the system, whe:re
h(p) = T’LT pli .
i=1
More specifically, it is desired to obtain a Buehler (1957) optimal lower 1 - a
confidence limit on h(S)-

The case of Y1 = Y2 T e =Y, < 1 has been treated in Sudakov (1974), Winterbottom
(1974), and Harris and soms (1983).

In Section 2 we summarize the general theory of Harris and Soms (1983) applicable
here. 1In Section 3 the exact solutions to no failures and key test results are given.
Lindstrom-Madden type approximations are given in Section 4. Section 5 contains numerical

examples.
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53201.

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-0041, the
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2. BUEHLER'S METHOD FOR OPTIMAL CONFIDENCE LIMITS

We now specialize the general results of Harris and Soms (1983) on optimal confidence
limits for system reliability to a series system with independent and repeated

components. As in Section 1, let

-~ k Yi
nip) =T 1 P,
i=1

0<py < T/ X =y ~ ¥, x5 =05 -y, 181<k 5= {x|x, =0,1,..0,n, 1< 1<kl and
let g(;) = (x49,%X3,+¢¢,%X) be an ordering function, i.e., for real X3, 0 € x, < ny,
g(;) is non-decreasing in each component. It is often convenient to normalize g(;) by

letting g(a) = 1 and g(;) = 0. With such a normalization, g(;) is often selected to

be a point estimator of h(p). Also let R = {r1,r resesT s 82 2} be the range set of

2

g(;)~ With no loss of generality we order R so that £y > ry > oo > rg and let
B; = {x]g(x) =ry, X €5, 1 =12,...,8). The sets A; constitute a partition of §

induced by g(§). We assume throughout that the data is distributed by

- ~ - - k n, ni-xi x,
flxip) = P~(X=x) =T | (" )p, q,
P =1 %0? .

k n, y, n.-y.
<TT (e ey 0 (2.1)
i=1 i

where q; = 1 - py, i =1,2,...,ks With no loss of generality, we assume

ny <€n, € ..., € Ny e

2

From these definitions, it follows that

3 -~
~ = p~ > . .2
pp{x £ H Al Pp{g(x) x ) (2.2)

From (2.1) and (2.2), we have
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2
L oeee ) fliip) . (2.3)

%
P~{g(X) » r.} =
p? LA ,
i,=0 0 1k=0

1 2

where i = (i,,iz,...,ik) and uy = uz(i1),...,uk = uk(i1,12,...,ik_1) are integers

determined by i Equivalently,
. (e, (t,] [tkl .
p;Ig():) > rj) = ) ) eee ) fUiip) , (2.4)
11=0 12=0 1k=0

where tp = tpliq)seee,ty = typliqsig,eee,ipq), with tq = sup{ti0 € £ < n; and

g(t,0,0,.,.,0) rj} and  tg(iy iy eeepig ) = sup{t]o € ¢ < n, and

q(i1,i2,-..,il_1,t,0,...,0) 4 rj}, L= 2,300,k

We now introduce the notion of Buehler optimal confidence limits. Let g(x) = rj.

Then define

a = inf{h(ﬁ){pB{Ilg(I) > g(x)} > a} . (2.5)

g(;)
Equivalently, by (2.2), we can also write

- 3
a )~ inf{h(p)|PE{X € &:{ At 2o} (Ao

Then we have, from Harris and Soms (1983),

Theorem 2.1. a is a 1 - a lower confidence limit for h(;). 1f bg(i) is any

g(;)

other 1 ~ a lower confidence limit for h(;) with br1 > bt > o2 b, then
2 J
b ,~, €a_ ~ for all ; E S.
glx) gl(x)
Two possible choices of g(;) are

.k v,
gtx) = T 1 (tn; ~x)/m) ", (2.7)
i=1 o

or

-3-




- k Yi-‘ ni - xi -3
gtx) =T 1 T7T{( —) . (2.8)
i=1  §=0 P

Both reduce to the generally used q(;c) for series systems with independent components

when Yy = Y2 = L., = yk = 1, i.e.,

k
g(x) = | (ny - xi)/ni .
i=1

Since (2.7) is the maximum likelihood estimator of h(B) we will use it here and from now

on it will be understood that g{x) is given by (2.7). with this choice of g(x), we

agsume from now on that 0 < x; < ny, i=1,2,¢..,k, 8ince aq(;) =0 if some

X; = nj. With this assumption, the t; in (2.4) are given by

k Y, Xk oy, Vy
ty=n, - (T (n; - x,) AR nil) ! (2.9)
i=1 im2
and
k Y, /i1 Y k Y, /Y
i . s i L
ty =n, - (|_ | (n; = x,) /'[—I' (ng = i) _I T n.") . (2.10)
i=1 s=1 i=+1

k Y,
£=2,0.0k, with T1 n’ =1
i=k+1
For the purpose of simplifying the calculation of ag(;) in special cases it is
necessary to state additional results from Harris and Soms (1983).
Theorem 2.2. Let g(;) =ry and let

£*(x;a) = sup p~{g(X) > rj}, 0 <Cac<1. (2.11)
h(p)=a

Then

-4-




. o . o
inf f (x:;a) = 0, sup f (xja) = 1
0<a<1 0<a<1

* -~
and f (xja) is strictly increasing in a.

* o~
Theorem 2.3. f (xja) = & has exactly one solution a, in a and L ag(;).

3. EXACT SOLUTIONS FOR_ZERO FAILURES AND KEY TEST RESULTS

We first assume that ; = (0,0,.,,,0) = 5 and use Theorem 2.3 to obtain a

g()”
Theorem 3.1. If x = 5, then
k n,/Y.
. o n
f (0ja) = sup | l pii = a 373 ’ {(3.1)
X Yi i=1
p, =a
i=1
where n_,/Y. = min n,/Y, and
I3 gqaek PR
Y./n
RS
ag(o) a . (3.2)
Proof.

X n X Y, n /Y, ko (ny,-n .Y, )/Y
i i i'3 i
[Test =T Te,") Y ITTs, 3 3
iwq i=1 i=1
i#j
n /Y
cad 3,
since "in ~ njyi » 0 is equivalent to ni/Y1 > "j/Yj' which is true, and therefore
k (nin-ani)/Yj 'I/Yj
by € 1, (3.1) follows by noting that the choice py = a e Py =N
i=1
i#4
kK n nj/rj
i+ 3, gives l | pii = a + Then, using Theorem 2.3, we obtain (3.2), which reduces

i=1
to the known series result if Yo=Y

==y o=

2




We now turn to analogues of key test results (see, e.g., Winterbottom (1974) and

Harris and Soms (1983)). We define a key test result if Yy = max Y, (recall that
- 1<ick
ny = min ni) and Xx = (x1,0,...,0).
1€ikk

Theorem 3.2. If x is a key test result and

.k Y, Lk AN ~ %
{zIT-T (n; - zi) » T-T (ni - xi) } = {zl'l (ng=2;)
i=1 i=1 i=1
k
> ) (ny=x)} (3.3)
i=1 *

then

*
f (x;a) = 1 1/Y1

a

(n = xq,x9 + 1), (3.4)

where Ix(a,b) is the incomplete beta function. Let bc denote the solution in b of
a = Ip{ng = Xq,xq + 1) &

~hen b 1. Note that ba is the usual 1 - a lower confidence limit on p,

aq(;) = Pa
given x4 failures in n4 trials.

Proof. Without loss of generality we can assume that nq = Ny = eee = My, for otherwise

we can write (2.4) as

. 1 ong ongmig i M1TH
p~{g(x) » rj} = ) li Je, q, {
p 1,=0 1 i,=0

X, =i =i _-.ece=i . .
11 i k-2 (nk_1) nk_1 1k-1q1k-1 n -
ik-1=° C— k=1 k- 1 Py k

(x1-i1-i2-"‘-ik-1)'x1~i1-12_"'-ik'1+1)

x . s Xl =i, see=i
‘ 11 (n1) no-ig i, 171 ; k-2 Mot Mt ik-1 ik_1I . -
. 1,70 9 e 1, /Pk-1 -1 “p, M
i =0 1 i =0 k-1 k
1 k-1
(X1-i1-i2'u-.-ik_1),x1‘i1‘12..--ik_1+1) ' (3.5)
-6=
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where q(§) =Ty, by the monotone likelihood ratio property of the beta distribution
(I,(a,b) has a monotone likelihood ratio in ~a for fixed b, which implies that
I.(a,b) is a decreasing function of a). A similar argument applies to the other
indexes. Thus, if (3.4) is true for ngy = ny = ... = n, by (3.5) it follows for

ng € n, € .00 € Ny

2

So, assuming ne= (n4,nq,.ce,nq), we seek to maximize

n

x ™ k "
el ) L oYi 2 ) ny~xp) =) oy, (3.6)
Plyar gm1 13 4y i=1 *

where ¥j4y are independent Bernoulli random variables with parameter p; and

k Yy k Yy .3 1/Yj
l | P = a, If | | P = a, then | l py ranges from a to
i i
i=1 i=1 i=1
1/Y1
a ' Yj = min Yy This is seen as follows:
1<i<k
k kv, /Yy _k1-Y. /¥
. i 1 i’"
1 TTe = (TTr) BEN
E 1=1 i=1 i=2
é 1/Y1 k (Y1-Yi)/Y1 1/Y1
1 = a pi < a
' i=2
and
k kv, Vv, Kk 1-Yi/Yj
[Tey=(TTe") B
i=1 i=1 i=1
i#j
vy, _k (Y.=v. )Y 1Y,
L -a 3 TT B, iy, s
E i=1
i 1#4 ;
' v, 1y
and the choices py = a ¢ Py = cee = p =1, and py = 2 ¢ Py =11 # j, attain
X i
these values. From the results of Pledger and Proschan (1971), for each b = , ’ Pir
i=1
-l




/Y, 1/

a J<b<a . (3.6) is maximized by p; =b, p; = 1, 2 € i ¢ k. Further, the
: AN A 177,
\ maximum over b, a <b<a + of the maxima for each b is given by py = a '

p; = 1, 2 <1ick, by the monotone likelihood ratio property of the binomial
1/Y1 k Y.
Iy : : 3 : - 1 .
distribution, and p, = a e py =N 2 € i<y, satisfies ! p; = a. This completes
i=1
the proof.

1f Y1 = 12 = eee = Yk = 1, some guidelines for the verification of (3.3) are given

in Harris and Soms (1983). In the present case (3.3) must be verified by trial and error

k L LRY. S Y
by showing that  min | | (nj - x;) ~ = (ny=-x,) 7T [ n’ and that
X i=1 i=2
k Y, Y X Y,
max T_T(ni-xi)l<(n1—x1)1T-Tnil.
K i=1 i=2
x, =x_+1
i%1 i . .
Example 3.1. Let k = 3, n= (5,5,5), Y = (3,3,2), a= .10 and x= (1 )}« Then
3 Yi 3 Yy
min | | (n; - x,) = 200000 and max T | (ng = x.) " = 1406.
3 i=1 3 i=1
L %=1 L ox;=2
i=1 i=1

x is a key test result and (3.3) is satisfied and hence

a = .41613 = .0720 ,

g(;)
where .10 = I,4161(4,2). Further, it can also be verified that x = (2,0,0) is a key

test result for which (3.3) is satisfied, but that for ; = (3,0,0), (3.3) is violated.
Y

1
Note that Theorem 3.2 asserts that ag(;) = ba for 0 < @ < 1. It is thus possible
that (3.3) is not true but the conclusion still holds for a of practical importance.

This is taken up in Section 4.

4. THE LINDSTROM~MADDEN METHOD FOR SERIES SYSTEMS WITH

REPEATED COMPONENTS

When Y1 = Y2 = ..o = Y_ = 1, the Lindstrom-Madden method (henceforth abbreviated

r

L-M) is an approximation bg(;) to ag(;) of the form

= min b (n,) , (4.1)

b -~
9tx) ik

-8~




a=1 - tgietgy + 1) . (4.2)

(n
bc(ni) i

with

k
tg; = ng(1 =~ | (ng ~ %3)/n3) , (4.3)
imq
i.e., tgy is the maximum of the recursive indexes t; defined by (2.4). For the usual
levels of a, bg(;) = ba(n1). Further, numerical evidence indicates (Harris and Soms
(1983)) that for a 1levels of practical significance

< (4.4)

Par € 2z ¢

(4.4) was incorrectly claimed to be true for 0 < a < 1 in Sudakov (1974) and this is

discussed at length in Harris and Soms (1983)., However, (4.4) is known to hold for

special cases (Winterbottom (1974) and Harris and Soms (1983)).

Motivated by the above, we now give an L-M approximation bg(;) to ag(;) for
arbitrary Y, by
Yy
bg(;) = 1?i:k ba(ni) B (4.5)
where
a =TIy n {0 = Epgetpy + 1, (4.6)
a i
with
. Y kv, Vv,
\ i
tOi =ny - (‘ l (nj - xj) 3 njj) v (4.7)
j=1 j-‘]
J#i

i.e., tgy is the maximum of the recursive indexes ty defined by (2.4). However, in

this case it is not clear which index 1 gives the minimum, except that the likely

-9-




candidate is the one for which Yj' 1¢ 3¢k, is a maximum. We might expect, by
analogy, that for a levels of practical interest

< a . (4.8)

bg(;) g(;)

5. NUMERICAL EXAMPLES

For k = 2 and selected n, Y, x, a = .05 and .10, Table I gives bg(;). ay%)

and the best upper bound, uq(;),
Yy

u ‘;) = min u (ni) B (5.1)

9 1€ick
where

a= Iu (n,)(ni - [tOi]'[tOi] + 1) (5.2)
a 1
and tg; are defined as in (4.6).
TABLE I.

L-M Approximations and ag(;)

(ng,ng)  (Yqe¥y)  (Xq,%p) a boxy  qgxy Ygh)

(10,10) (1,2) (0,1 «05 +3670 .3670 .3670
(10,10) (1,2) (0,1) .10 .4398 .4398 .4398
(10,10) (1,2) (1,1 <05 .3045 3514 <3670
(10,10) {1,2) (1,1) .10 «3715 <4227 .4398
(10,10) (1,2) (2,1) .05 .2484 «3151 +3670
(10,10) (1,2) (2,1 <10 .3088 .3825 .4398
(10,15) (2,3) (0,1) .05 .3695 .3719 3742
(10,15) (2,3) (0,1) .10 .4425 +4446 4467
(10,15) (2,3) (1,1 .05 .2554 .3042 .3670
(10,15) (2,3) (1,1) .10 .3167 .3705 .4398
(10,15} (2,3) (2,1 .05 1712 .1981 .2431
(10,15) (2,3) (2,0) <10 «2203 .2513 .3029

-10-




The

is a lower bound for aq(;).

Note that for all the cases in Table I, bg(;)

computations were done by a short FORTRAN program, a listing of which can be obtained from

the author.

6. CONCLUDING REMARKS

In this paper we have extended the 1~M method to series systems with repeated

components. More work is needed to ascertain the region of validity of (4.8).

-f{=
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